A High-Dimensional Nonparametric Multivariate Test for Mean Vector.
نویسندگان
چکیده
This work is concerned with testing the population mean vector of nonnormal high-dimensional multivariate data. Several tests for high-dimensional mean vector, based on modifying the classical Hotelling T2 test, have been proposed in the literature. Despite their usefulness, they tend to have unsatisfactory power performance for heavy-tailed multivariate data, which frequently arise in genomics and quantitative finance. This paper proposes a novel high-dimensional nonparametric test for the population mean vector for a general class of multivariate distributions. With the aid of new tools in modern probability theory, we proved that the limiting null distribution of the proposed test is normal under mild conditions when p is substantially larger than n. We further study the local power of the proposed test and compare its relative efficiency with a modified Hotelling T2 test for high-dimensional data. An interesting finding is that the newly proposed test can have even more substantial power gain with large p than the traditional nonparametric multivariate test does with finite fixed p. We study the finite sample performance of the proposed test via Monte Carlo simulations. We further illustrate its application by an empirical analysis of a genomics data set.
منابع مشابه
A nonparametric two-sample test applicable to high dimensional data
Multivariate two-sample testing problem has been well investigated in the literature, and several parametric and nonparametric methods are available for it. However, most of these two-sample tests perform poorly for high dimensional data, and many of them are not applicable when the dimension of the data exceeds the sample size. In this article, we propose a multivariate two-sample test that ca...
متن کاملVariance function estimation in multivariate nonparametric regression with fixed design
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Pa...
متن کاملMann - Withney multivariate nonparametric control chart.
In many quality control applications, the necessary distributional assumptions to correctly apply the traditional parametric control charts are either not met or there is simply not enough information or evidence to verify the assumptions. It is well known that performance of many parametric control charts can be seriously degraded in situations like this. Thus, control charts that do not requi...
متن کاملVariance Function Estimation in Multivariate Nonparametric Regression
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...
متن کاملA necessary test for complete independence in high dimensions using rank-correlations
We propose a nonparametric necessary test for the complete independence of random variables in high-dimensional environment. The test is constructed based on Spearman’s rank-correlations and is shown to be asymptotically normal by martingale central limit theorem as both the sample size and the dimension of variables go to infinity. Simulation studies show that the proposed test works well in f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 110 512 شماره
صفحات -
تاریخ انتشار 2015